Materi Optik

Materi Kelas X   Materi Kelas XI   Materi Kelas XII   Kumpulan Rumus   Soal-Soal    Les/Privat

—————————————————————————————————————————————————–

1. Besaran, satuan, pengukuran dan vektor
2. Kinematika Gerak Lurus
3. Dinamika Gerak Lurus
4. Gerak Melingkar
5. Elastisitas dan Hukum Hooke
6. Fluida Statis
7. Suhu dan Kalor
8. Alat-alat Optik

Klik salah satu materi pokok di atas yang ingin Anda pelajari!


Kalian tentu sudah tidak asing lagi dengan kacamata, lup, mikroskop dan teropong. Alat-alat itu merupakan alat-alat yang menggunakan sifat-sifat cahaya untuk membantu penglihatan mata dan dikenal sebagai alat-alat optik. Tahukah kalian komponen-komponen yang ada pada alat optik itu? Ternyata komponen utamanya adalah cermin lengkung dan lensa. Oleh sebab itu untuk mempelajari alat-alat optik
ini perlu memahami sifat-sifat cahaya yang mengenai cemin lengkung dan lensa tipis. Pahamilah sifat-sifat cahaya tersebut pada penjelasan berikut.
Cermin
Cermin adalah permukaan yang licin dan dapat menciptakan pantulan sehingga membentuk bayangan. (dalam wikipedia, 2015). Banyak benda-benda lain di sekitar kita yang dapat memantulkan cahaya, misalnya air di kolam dan benda-benda yang terbuat dari logam mengilat seperti emas, perak, dan perunggu.
Cermin terdiri atas cermin datar dan cermin lengkung. Cermin datar memiliki permukaan yang datar, sedangkan cermin lengkung memiliki permukaan yang lengkung. Cermin lengkung terdiri atas cermin silinder dan cermin bola. Cermin lengkung yang akan dibicarakan dalam modul ini adalah cermin bola. Jika permukaan bola bagian dalam yang mengkilap, jenis cermin adalah cermin cekung. Jika permukaan bagian luar bola yang mengkilap, jenis cermin adalah cermin cembung. Ruang di belakang cermin yang dapat dilihat oleh mata disebut dengan medan penglihatan. Medan penglihatan tergantung pada ukuran cermin dan letak mata di depan cermin
Pemantulan pada cermin Lengkung
Sewaktu di SMP kalian telah dikenalkan tentang cermin lengkung. Cermin lengkung ada dua jenis yaitu cermin cembung dan cemin cekung. Pertama-tama yang perlu kalian ketahui adalah daerah di sekitar cermin lengkung. Daerah ini dibagi menjadi empat ruang. Perhatikan pembagian ruang ini pada Gambar berikut. Coba kalian amati apa persamaan dan perbedaan dari cermin cekung dan cermin cembung.
 
Pembagian ruang pada cermin cekung itu dibatasi oleh cermin (titik O), titik R (titik pusat kelengkungan) dan titik F (titik fokus). Jarak OF sama dengan FR sehingga berlaku hubungan:
Ruang-ruang di sekitar cermin ini juga dibagi menjadi dua lagi yaitu daerah di depan cermin bersifat nyata dan di belakang cermin bersifat maya.
Sifat-sifat bayangan
Bayangan-bayangan benda oleh cermin lengkung dapat ditentukan dengan berbagai metode. Metode itu diantaranya adalah dengan percobaan dan penggambaran sinar-sinar istimewa. Ada tiga sinar istimewa yang melalui cermin yaitu:
1.      Sinar yang menuju fokus akan dipantulkan sejajar sumbu utama.
2.      Sinar yang sejajar sumbu utama akan dipantulkan menuju fokus (untuk cermin cekung) atau seolah-olah dari fokus (untuk cermin cembung).
3.      Sinar yang menuju atau melalui titik pusat kelengkungan (R) akan dipantulkan kembali.
Hubungan antar besaran
Sifat-sifat bayangan oleh cermin lengkung juga dapat ditentukan secara matematis. Masih ingat hubungan jarak benda ke cermin (S), jarak bayangan ke cermin (S’) dan jarak fokus (f)? Di SMP kalian sudah diajarkan. Hubungan itu dapat dituliskan sebagai berikut.
Hubungan kedua yang perlu kalian mengerti adalah perbesaran bayangan. Perbesaran bayangan oleh cermin lengkung memenuhi:
Untuk melihat hubungan antara nilai M dengan sifat-sifat bayangan yang terbentuk, dapat dlihat pada tabel berikut ini.
Tabel 2.1. Perbesaran Cermin
Nilai M
Sifat Bayangan
M > 1 (positif)
0 < M < 1 (positif)
Maya, tegak, diperbesar
Maya, tegak, diperkecil
M < -1 (negatif)
M = -1 (negatif)
-1 < M < 0 (negatif)
Nyata, terbalik, diperbesar
Nyata, terbalik, sama besar
Nyata, terbalik, diperkecil

LENSA

Lensa adalah benda tembus cahaya yang dibatasi oleh dua bidang lengkung, biasanya bidang bola, kadang-kadang bidang silinder, atau satu bidang lengkung dan satu bidang datar. Lensa terdiri dari beberapa jenis; ada lensa cembung, ada lensa cekung. Lensa cembung ialah lensa yang bagian tengahnya lebih tebal daripada bagian pinggirnya; sedangkan lensa cekung bagian tengahnya lebih tipis daripada bagian pinggirnya. Lensa cembung (lensa konveks) terdiri dari beberapa macam: Lensa cembung rangkap (bi-konveks), lensa cembung datar (plano-konveks), lensa cembung cekung (konkaf-konveks). Lensa cekung (lensa-konkaf) terdiri beberapa jenis, yaitu; lensa cekung rangkap (bi-konkaf), lensa cekung datar (plano-konkaf), dan lensa cekung cembung (konveks-konkaf). Lensa cembung disebut juga lensa konvergen, karena bersifat mengumpulkan sinar-sinar. Lensa cekung disebut juga lensa divergen, karena bersifat memencarkan sinar-sinar.
Seperti halnya pada cermin lengkung, pada lensa juga dibagi menjadi empat ruang. Pembagian ruangannya berbeda antara ruang benda dan ruang bayangan. Perhatikan Gambar berikut.

                 Pembentukan bayangan hasil pembiasan lensa juga mirip pada cermin lengkung, ada tiga sinar istimewa yang perlu dimengerti. Tiga sinar istimewa itu adalah sebagai berikut.

1.      Sinar yang menuju fokus akan dibiaskan sejajar sumbu utama.
2.      Sinar yang sejajar sumbu utama akan dibiaskan menuju fokus lensa (untuk lensa cembung) atau seolah-olah dari fokus (untuk lensa cekung).
3.      Sinar yang menuju pusat lensa akan diteruskan.

 

Hubungan Antar Besaran
Rumus umum cermin lengkung dan rumus perbesaran linier pada cermin lengkung juga berlaku untuk lensa tipis yaitu:

Indeks Bias
Indeks bias mutlak suatu medium dapat dipandang sebagai suatu ukuran kemampuan medium itu untuk membelokkan cahaya. Medium yang memiliki indeks bias lebih besar adalah medium yang lebih kuat membelokkan cahaya. Persamaan Snellius menyatakan bahwa:
n1 sin Θ1 = n2 sin Θ2
Hubungan antara cepat rambat dengan indeks bias dinyatakan dengan:
v1 n1 = v2 n2
Dan hubungan antara panjang gelombang dengan indeks bias dinyatakan dengan:
λ1 n1 = λ2 n2
Dimana:
            n1 = indeks bias medium 1
n2 = indeks bias medium 2
Θ1 = sudut sinar datang di medium 1
Θ2 = sudut sinar bias di medium 2
v1 = cepat rambat gelombang di medium 1
v2 = cepat rambat gelombang di medium 2
λ1 = panjang gelombang di medium 1
λ2 = panjang gelombang di medium 2
Persamaan Pembuat Lensa
Jarak fokus lensa dalam suatu medium berhubungan dengan jari-jari kelengkungan bidang depan dan bidang belakang lensa dan indeks bias bahan lensa, yang dinyatakan dengan:

Persamaan di atas sering digunakan untuk menetukan jarak fokus lensa yang ingin dibuat oleh para pembuat lensa sehingga disebut persamaan pembuat lensa.
Kuat Lensa
Besaran yang menyatakan ukuran lensa dinamakan kuat lensa/daya lensa (P) yang secara matematis dirumuskan dengan:
PRISMA
Dalam optik fisika ada yang namanya prisma. Ia adalah salah satu alat optik berupa benda transparan (bening) terbuat dari bahan gelas atau kaca yang dibatasi oleh dua bidang permukaan yang membentuk sudut tertentu. Sudut diantara dua bidang tersebut disebut sudut pembias sedangkan dua bidang pembatas disebut bidang pembias. Alat optik prisma digunakan untuk analisis pembiasan, pemisahan, maupun pemantulan cahaya. Benda optik ini dapat memisahkan cahaya putih menjadi cahaya warna-warni (warna pelangi) yang menyusunnya yang sering disebut dengan spektrum.
Prisma banyak digunakan dalam instrumen stereoskopik dengan memanfaatkan pembiasan cahaya pada prisma untuk memberikan efek tiga dimensi dalam visualisasi grafis.
Pembiasan Cahaya pada Prisma
Jalannya sinar pada peristiwa pembiasan cahaya pada prisma ditunjukkan oleh gambar berikut
Sudut deviasi adalah sudut yang dibentuk oleh perpanjangan cahaya yang masuk pada prisma dengan cahaya yang meninggalkan prisma
PEMBIASAN PADA GELEMBUNG SABUN
DAN LAPISAN MINYAK DI ATAS AIR

Dalam kehidupan sehari-hari, kita sering melihat gelembung air sabun akan terlihat berwarna, warni. Begitu juga genangan minyak tanah diatas permukaan air, akan terlihat sama berwarna warni.

Apa yang terjadi dengan peristiwa itu ?
Kesan melihat gelembung air sabun berwarna-warni disebabkan terjadinya  interferensi yaitu perpaduan dua gelombang cahaya a yang jatuh pada selaput tipis, seperti selaput air sabun. Sinar datang (AB) jatuh pada selaput tipis dengan tebal lapaisan (d), oleh selaput akan dibiaskan sinar (BC)  dan dua sinar dipantulkan yaitu sinar (BD) dan EF, kedua sinar S1 dan S2 akan berinterferensi di retina mata, sehingga kita bisa melihat gelembung sabun berwarna warni.
Jika cahaya yang dijatuhkan pada selaput tipis cahaya monokhromatik, maka pada gelembung sabun tidak akan terlihat warna pelangi, melainkan warna terang dan gelap.
PELANGI
 
Pelangi merupakan suatu busur spektrum besar yang terjadi karena pembiasan cahaya matahari oleh butir-butir air. Pelangi adalah gejala optik dan meteorologi berupa cahaya beraneka warna saling sejajar yang tampak di langit atau medium lainnya. Di langit, pelangi tampak sebagai busur cahaya dengan ujungnya mengarah pada horizon pada suatu saat hujan ringan. Pelangi juga dapat dilihat di sekitar air terjun yang deras. Biasanya fenomena ini terjadi ketika udara sangat panas tetapi hujan turun rintik-rintik. Kita dapat melihat jelas fenomena ini, jika kita berdiri membelakangi cahaya matahari. Pelangi dapat pula terbentuk karena udara berkabut atau berembun.
Dalam ilmu fisika, pelangi dapat dijelaskan sebagai sebuah peristiwa pembiasan alam. Pembiasan merupakan proses diuraikannya satu warna tertentu menjadi beberapa warna lainnya (disebut juga spektrum warna), melalui suatu media/ medium tertentu pula.

Proses Terjadinya Pelangi
Bagaimana proses terjadinya pelangi adalah bermula dari ketika cahaya matahari melewati sebuah tetes hujan yang kemudian dibelokkan atau dibiaskan menuju tengah tetes hujan tersebut, yang memisahkan cahaya putih itu menjadi sebuah warna spektrum. Kemudian, warna-warna yang terpisah ini memantul di belakang tetes hujan dan memisah lebih banyak lagi saat meninggalkannya. Akibatnya, cahaya tampak melengkung menjadi kurva warna yang disebut sebagai pelangi. Cahaya dengan panjang gelombang terpendek seperti ungu, terdapat di bagian kurva dan yang memiliki panjang gelombang terpanjang seperti merah terdapat pada bagian luar.
PERALATAN OPTIK
Mata
Mata manusia terdiri dari kornea, cairan aqueous humor, lensa mata (lensa kristalin), iris, pupil, vitreous humor, retina, otot siliar, dan saraf optik. Ketika cahaya masuk ke mata melalui kornea, dibiaskan oleh cairan aqueous humor. Iris mengendalikan besar kecilnya pupil, yang mengatur banyak sedikitnya cahaya yang masuk ke lensa mata. Cahaya ini difokuskan oleh lensa mata ke retina, yang terdiri atas berjuta-juta sel sensitif (sel batang dan sel kerucut). Ketika dirangsang oleh cahaya sel-sel ini mengirim sinyal-sinyal melalui saraf optik ke otak. Jadi, suatu bayangan nyata benda dapat diterima dengan jelas jika bayangan tersebut jatuh di retina. Bayangan yang dibentuk pada retina adalah nyata, terbalik, dan lebih kecil, namun bayangan yang terbalik ini diinterpretasikan oleh otak sebagai bayangan tegak.
Untuk mencapai retina, cahaya mengalami 5 kali pembiasan yaitu dari udara (n = 1), kornea (n = 1,38), aqueous humor (n = 1,33), lensa (rata-rata n = 1,40), dan vitreous humor (n = 1,34). Prosentase pembiasan yang terbesar terjadi pada bidang batas antara udara-kornea karena perbedaan indeks bias antara keduanya paling besar daripada bidang batas pembiasan yang lainnya. Mata memiliki jarak bayangan tetap karena jarak lensa mata dan retina adalah tetap. Agar benda-benda dengan jarak berbeda dapat difokuskan pada retina maka jarak fokus lensa mata harus diatur. pengaturan jarak fokus ini dilakukan oleh otot siliar. Proses dimana lensa mengubah jarak fokus untuk keperluan memfokuskan benda-benda pada berbagai jarak disebut akomodasi mata. 
Cacat Mata (Aberasi) dan Cara Menanggulanginya
Mata dapat melihat dengan jelas jika letak benda berada dalam jangkauan penglihatan, yaitu antara titik dekat mata (punctum proximum) dan titik jauh mata (punctum remotum). Titik dekat mata adalah titik paling dekat ke mata dimana suatu benda dapat diletakkan dan masih menghasilkan suatu bayangan tajam pada retina ketika mata berakomodasi maksimum. Titik jauh mata adalah lokasi paling jauh benda dimana mata yang relaks (mata tak berakomodasi) dapat memfokuskan benda. Mata normal (emetropi) memiliki titik dekat 25 cm dan titik jauh tak berhingga (~).
1.      Rabun jauh (miopi)
Mata rabun jauh memiliki titik dekat lebih kecil daripada 25 cm dan titik jauh pada jarak tertentu. Cacat ini disebabkan oleh karena lensa mata tidak dapat menjadi pipih sebagaimana mestinya sehingga bayangan jatuh di depan retina. Cacat mata ini dapat dibantu dengan lensa cekung, karena lensa cekung akan memencarkan cahaya sebelum masuk ke mata sehingga dapat membuat bayangan jatuh tepat di retina.
2.      Rabun dekat (hipermetropi)
Mata rabun dekat memiliki titik dekat lebih besar daripada 25 cm dan titik jauh pada jarak tak terhingga. Keadaan ini terjadi karena lensa mata tidak dapat menjadi cembung sebagaimana mestinya sehingga bayangan jatuh di belakang retina. Untuk membantu penderita rabuh dekat digunakan kacamata berlensa cembung yang akan menguncupkan cahaya sebelum masuk ke mata sehingga bayangan akan jatuh tepat di retina.
3.      Mata tua (presbiopi)
Mata tua adalah cacat mata akibat berkurangnya daya akomodasi mata pada usia lanjut. Titik dekatnya lebih besar dari 25 cm dan titik jauhnya pada jarak tertentu. Mata presbiopi ditolong dengan kacamata berlensa rangkap/bifokal.
4.      Astigmatisma
Cacat mata astigmatisma disebabkan oleh kornea mata yang tidak berbentuk sferik (irisan bola), melainkan lebih melengkung pada satu bidang daripada bidang lainnya (bidang silinder). Akibatnya, benda titik difokuskan sebagai garis pendek. Mata astigmatisma juga memfokuskan sinar-sinar pada bidang vertikal lebih pendek daripada bidang horisontal. Cacat mata ini dapat dibantu dengan kacamata silindris.
5.      Katarak dan glaukoma
Seseorang yang berumur panjang sewaktu-waktu dalam hidupnya akan mengalami pembentukan katarak, yang membuat lensa matanya secara parsial atau secara total buram (tak tembus cahaya). Pengobatan umum untuk katarak adalah operasi pembersihan lensa. Glaukoma disebabkan oleh peningkatan abnormal pada tekanan fluida dalam mata. Peningkatan tekanan ini dapat menyebabkan pengurangan suplai darah ke retina, yang akhirnya dapat mengarah kepada kebutaan. Jika gejala penyakit ini ditemukan lebih dini, penyakit ini bisa ditanggulangi dengan obat atau pembedahan.
           

Kamera
Kamera memiliki sebuah lensa positif dan cara kerjanya sama dengan mata. Berkas cahaya yang masuk pada kamera akan dibiaskan sehingga benda yang ditempatkan di depan lensa akan memberikan suatu bayangan di belakang lensa yang kemudian ditangkap oleh film. Bayangan ini nyata, diperkecil, dan posisinya terbalik. Kamera mempunyai diafragma yang fungsinya sama dengan dengan fungsi pupil pada mata. Jarak fokus kamera tetap, tapi jarak bayangannya dapat diubah-ubah.
Lup (Kaca Pembesar)

Lup adalah alat optik yang paling sederhana yang hanya menggunakan sebuah lensa cembung. Lup digunakan untuk melihat angka-angka yang sangat kecil, dan banyak digunakan oleh tukang arloji untuk melihat komponen-komponen arloji yang berukuran kecil.
Mikroskop
Mikroskop merupakan alat optik yang menggunakan dua buah lensa positif. Satu lensa diletakkan di dekat objek yang disebut lensa objektif dan lensa lainnya diletakkan dekat mata pengamat yang disebut lensa okuler. Fungsi mikroskop yaitu untuk melihat benda-benda renik (benda-benda yang sangat kecil). Sifat bayangan yang dibentuk oleh mikroskop adalah maya, diperbesar, dan terbalik.
Teropong
Teropong atau teleskop merupakan alat optik yang digunakan untuk mengamati benda-benda yang jauh letaknya agar tampak lebih dekat dan jelas. Teropong dapat dikelompokkan dalam dua bagian yaitu teropong lensa (bias), yaitu teropong yang menggunakan lensa, dan teropong cermin (pantul), yaitu teropong yang menggunakan cermin dan lensa. Yang termasuk teropong bias yaitu:
1)      Teropong bintang (teropong astronomi), menggunakan dua lensa positif, untuk mengamati benda-benda yang jauh.
2)      Teropong bumi, digunakan untuk melihat benda-benda yang sangat jauh di permukaan bumi. Teropong ini dilengkapi dengan lensa pembalik yang juga lensa positif, yang ditempatkan setelah lensa objektif, yang fungsinya adalah untuk membalikkan bayangan sehingga bayangan akhir menjadi tegak.
3)      Teropong panggung (teropong Galilei), menggunakan lensa positif sebagai lensa objektif, dan lensa negatif sebagai lensa okuler. Bayangan akhir yang dihasilkan adalah bayangan tegak.
 
4)      Teropong prisma (binokuler), menggunakan dua lensa positif yang berfungsi sebagai lensa objektif dan lensa okuler, dan prisma sebagai pengganti lensa pembalik.
Sedangkan teropong pantul, misalnya teropong pantul astronomi, menggunakan cermin cekung besar yang berfungsi sebagai pemantul cahaya, satu cermin datar kecil, dan satu lensa cembung. Seperti terlihat pada gambar berikut.
Anda mungkin sering melihat ada pekerjaan galian kabel optik di jalan (seperti gambar di atas). Tahukah Anda apa itu kabel serat optik dan bagaimana prinsip kerjanya? Berikut ini akan dijelaskan tentang serat optik.
Serat optik adalah saluran transmisi atau sejenis kabel yang terbuat dari kaca atau plastik yang sangat halus dan lebih kecil dari sehelai rambut, dan dapat digunakan untuk mentransmisikan sinyal cahaya dari suatu tempat ke tempat lain. Pada saat ini banyak penelitian dilakukan untuk menyalurkan cahaya melalui kabel. Penggunaan serat kaca (glass fiber) untuk menyalurkan cahaya dengan peristiwa pemantulan sempurna dinamakan teknologi serat optik (fiber-optic technology), seperti gambar berikut.
Dalam metode konvensional, arus listrik atau gelombang radio digunakan untuk membawa sinyal-sinyal komunikasi. Metode serat optik dapat dipakai di bidang komunikasi untuk menggantikan metode konvensional. Penggunaan serat optik dalam telekomunikasi adalah dengan menggunakan sinar laser yang menggantikan arus listrik dan gelombang radio sebagai pembawa sinyal. Keuntungan lain adalah gelombang cahaya memiliki frekuensi lebih tinggi daripada arus listrik dan gelombang radio. Dengan demikian, jumlah informasi per satuan waktu yang disalurkan melalui serat optik lebih banyak daripada melalui kabel biasa atau gelombang radio.
Cara Kerja Fiber Optik
Pada prinsipnya fiber optik memantulkan dan membiaskan sejumlah cahaya yang merambat di dalamnya. Efisiensi dari serat optik ditentukan oleh kemurnian dari bahan penyusun gelas/kaca. Semakin murni bahan gelas, semakin sedikit cahaya yang diserap oleh fiber optik. Untuk mengirimkan percakapan-percakapan telepon atau internet melalui fiber optik, sinyal analog di rubah menjadi sinyal digital. Sebuah laser transmitter pada salah satu ujung kabel melakukan on/off untuk mengirimkan setiap bit sinyal. Sistem fiber optik modern dengan single laser bisa mentransmitkan jutaan bit/second. Atau bisa dikatakan laser transmitter on dan off jutaan kali /second.
Sebuah kabel fiber optics terbuat dari serat kaca murni, sehingga meski panjangnya berkilo-kilo meter, cahaya masih dapat dipancarkan dari ujung ke ujung lainnya.
Helai serat kaca tersebut didesain sangat halus, ketebalannya kira-kira sama dengan tebal rambut manusia. Helai serat kaca dilapisi oleh 2 lapisan plastik (2 layers plastic coating) dengan melapisi serat kaca dengan plastik, akan didapatkan equivalen sebuah cermin disekitar serat kaca. Cermin ini menghasilkan refleksi total pada bagian dalam serat kaca (total internal reflection).
Sama halnya ketika kita berada pada ruangan gelap dengan sebuah jendela kaca, kemudian kita mengarahkan cahaya senter 90 derajat tegak lurus dengan kaca, maka cahaya senter akan tembus ke luar ruangan. Akan tetapi jika cahaya senter tersebut diarahkan ke kaca jendela dengan sudut yang rendah (hampir paralel dengan cahaya aslinya), maka kaca tersebut akan berfungsi menjadi cermin yang akan memantulkan cahaya senter ke dalam ruangan. Demikian pula pada fiber optics, cahaya berjalan melalui serat kaca pada sudut yang rendah.
Reliabilitas dari serat optik dapat ditentukan dengan satuan BER (Bit error rate). Salah satu ujung serat optik diberi masukan data tertentu dan ujung yang lain mengolah data itu. Dengan intensitas laser yang rendah dan dengan panjang serat mencapai beberapa km, maka akan menghasilkan kesalahan. Jumlah kesalahan persatuan waktu tersebut dinamakan BER. Dengan diketahuinya BER maka, Jumlah kesalahan pada serat optik yang sama dengan panjang yang berbeda dapat diperkirakan besarnya.
Penggunaan Serat Optik dalam dunia kedokteran

Penggunaan saluran serat optik dalam dunia kedokteran adalah untuk memeriksa bagian dalam tubuh seorang pasien tanpa harus membedahnya. Ujung saluran serat optik dimasukkan ke dalam tubuh pasien dan dokter memeriksa (melihat) bagian dalam tubuh pasien melalui kamera. Teknologi ini dinamakan endoskopi

——————————————————————————————————————————

Wisata Fisika

Berikut merupakan kumpulan materi fisika yang dapat Anda pelajari dengan mengklik salah satu materi yang ingin dipelajari. Sudah siap? Ayo kita mulai!

Kelas X 

Kelas XI 

Kelas XII 


Related Post


1. Besaran, satuan, pengukuran dan vektor

2. Kinematika Gerak Lurus
3. Dinamika Gerak Lurus
4. Gerak Melingkar
5. Elastisitas dan Hukum Hooke
6. Fluida Statis
7. Suhu dan Kalor
8. Alat-alat Optik

Iklan

1 reply »

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout /  Ubah )

Foto Google+

You are commenting using your Google+ account. Logout /  Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout /  Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout /  Ubah )

Connecting to %s